
Digital Twin - Aveiro Tech City Living Lab
PI - Projeto em Informática

Technical Report - Project Specifications

Bernardo Pinto - 105926
Filipe Obrist - 107471
José Mendes - 107188
Mariana Perna - 108067
Rafaela Dias - 108782

2023/2024

Abstract

This project aims to create a platform for urban Digital Twin of Aveiro, allowing
visualization of physical data and simulations of scenarios for autonomous vehicles and
multi-modal transportation.

Contents

1 Introduction 4

2 Our Team 5

3 Inception Phase 6
3.1 Product Concept . 6

3.1.1 Problem . 6
3.1.2 Goals . 6
3.1.3 State-of-the-Art . 7

3.2 Workflow . 8
3.2.1 Tasks and Project Calendar . 8
3.2.2 Communication Plan and workflow . 10

4 Elaboration Phase 11
4.1 Requirements . 11

4.1.1 Requirements Gathering . 11
4.1.2 Functional Requirements . 11
4.1.3 Non-Functional Requirements . 11

4.2 Actors . 12
4.3 Use Cases . 12

4.3.1 Personas . 12
4.3.2 Main Scenarios . 13
4.3.3 Use Cases Diagram . 15

4.4 Architecture . 15
4.5 Technology Stack . 18

4.5.1 React & Electron . 18
4.5.2 Flask . 18
4.5.3 MongoDB . 18
4.5.4 Mosquitto . 19

5 Construction Phase 20
5.1 What have we done . 20

5.1.1 Generation of 2D and 3D Maps: . 20
5.1.2 Adapters . 21
5.1.3 Flask API . 24
5.1.4 User Management Endpoints in the Flask Application 25
5.1.5 STH Comet API integration with the Flask API 26
5.1.6 Fetching Data from STH Comet API . 27

5.2 Desktop Application . 28
5.2.1 Directory Structure . 28
5.2.2 User Interface Overview . 28
5.2.3 Statistics . 35

5.3 Fears and Difficulties . 37
5.3.1 Fears . 37
5.3.2 Difficulties . 39

PI - Projeto em Informática 2

5.4 Changes in the initial plan . 40
5.4.1 Architecture . 40
5.4.2 New User Interaction . 40
5.4.3 Types of Simulations . 41

6 Results 41
6.1 Co-Simulation between SUMO and CARLA . 41
6.2 Simulated Data . 42
6.3 Desktop Application . 43
6.4 Live Data . 43
6.5 Historical Data . 44
6.6 Interaction Between Real and Simulated Vehicles 44
6.7 Statistics and Graphs . 45

7 Project Management 46
7.1 Project Management Tool . 46
7.2 Development Workflow . 46
7.3 CI/CD Pipelines . 47

8 Conclusion 49

9 Future Work 50

10 References 51

PI - Projeto em Informática 3

1 Introduction

Smart cities have been emerging as a viable solution to tackle environmental and social
challenges. However, tackling the challenges of understanding and predicting the dynamics of
these cities can be problematic. To retify this, the concept of Digital Twin offers a novel approach
by virtually representing physical environments, allowing real-time monitoring, analysis, and
action based on existing data. With 3D modeling, Digital Twins mirror physical objects in the
digital environment, making it more realistic and easier to visualize several scenarios. Developed
as a risk-free system, Digital Twins have found new applications in Smart Cities and autonomous
mobility, continuously gathering data from sensors and other devices.

Leveraging initiatives like the Aveiro Tech City Living Labs (ATCLL) and Altice Labs’ Live!
Ecosystem, this project aims to develop a platform supporting Digital Twin concepts for urban
environments. By allowing visualization of physical twin data and simulation of scenarios, the
platform targets use cases like road blockage scenario emulation and large-scale multi-modal
transportation simulation. Validation will occur in a laboratory environment, utilizing real data
from the sensors around the city of Aveiro and Altice Labs’ urban platform, thereby addressing
the challenges of modelling and predicting Smart City dynamics.

PI - Projeto em Informática 4

2 Our Team

This project is composed of 5 members and 4 advisors. The following table (Table 1) shows
these elements and their roles.

Role Name
Member Bernardo Pinto
Member Filipe Obrist
Member José Mendes
Member Mariana Perna
Member Rafaela Dias
Advisor Duarte Raposo
Advisor Filipe Cabral Pinto
Advisor Pedro Rito
Advisor Susana Sargento

Table 1 - Team Roles

PI - Projeto em Informática 5

3 Inception Phase

3.1 Product Concept

3.1.1 Problem

Urban traffic management is a complex and challenging task. City planners often struggle
with the unpredictability of traffic patterns and the difficulty in managing unexpected events.
Without advanced tools, their ability to foresee and mitigate these issues is severely limited.
This project aims to address these challenges head-on.

Our project tackles several critical challenges in traffic management and simulation, particularly
focusing on the limitations of current methodologies. One of the main issues is the difficulty in
simulating extreme or unlikely scenarios, such as road closures or construction sites, without the
aid of a Digital Twin. This absence of a digital representation hinders our ability to predict and
manage potential traffic crises effectively.

Proactive traffic management and planning are significantly more challenging without a
Digital Twin. The lack of detailed data and precise simulations makes it difficult to predict
potential problems and implement preventive measures, leading to inefficient traffic management.
Additionally, testing specific scenarios often requires physical presence, which involves inefficient
resource allocation and substantial time consumption. On-site testing is not only costly but also
time-intensive, further complicating efforts to optimize traffic systems.

By developing a Digital Twin for the city of Aveiro, our project aims to overcome these
limitations, providing a powerful tool for accurate traffic simulation, real-time data integration,
and efficient urban planning.

3.1.2 Goals

To address these challenges, our project aims to develop a comprehensive solution through
the creation of a Digital Twin platform. Our primary goal is to build a system that can
visualize real city data and generate simulated scenarios, providing a detailed and dynamic
digital representation of Aveiro. This Digital Twin will enable advanced simulations and more
effective traffic management, revolutionizing how we approach urban planning.

One key objective is to develop a robust platform that integrates real-time data from the
city’s infrastructure. By visualizing current traffic conditions and simulating various scenarios,
city planners can gain a deeper understanding of actual traffic flows and identify potential issues
before they escalate.

Additionally, our project explores the complexities of multi-modal transportation scenarios.
By conducting large-scale simulations, we aim to understand how different modes of transportation,
such as cars, bicycles, and public transit, interact within the city. For example, simulating an
increase in the number of bicycles will help us assess its impact on road traffic and optimize
overall mobility.

PI - Projeto em Informática 6

Furthermore, we are committed to ensuring that our simulated scenarios are grounded in
reality. To achieve this, we will test and validate our simulations using real data obtained
through the city’s infrastructure and the urban platform provided by Altice Labs. This step
is crucial to ensure that our solutions are effective, reliable, and applicable to real-world urban
planning and traffic management.

Ultimately, by developing this Digital Twin for the city of Aveiro, our project aims to provide
city planners with a powerful tool to optimize traffic management and urban planning, paving
the way for a smarter and more efficient city.

3.1.3 State-of-the-Art

To understand a little bit more about Digital Twin and our project, we analyzed several
IEEE papers, of which we present here the most essential ones for gaining deeper insights into
the subject.

1. Building a Motorway Digital Twin in SUMO [1]

• Introduces the Digital Twin concept.

• Develops a Digital Twin specific to the Geneva motorway using SUMO.

• Incorporates real-time data, aligning with our objectives.

Click here to visit the document

2. Smart Mobility Digital Twin for Automated Driving [2]

• Provides an overview of the Digital Twin concept.

• Focuses on real-time monitoring and planned route development considering traffic
conditions.

Click here to visit the document

3. Efficient Procedure of Building University Campus Models for Digital Twin
Simulation [3]

• Constructs a 3D model of a university campus (Digital Twin) using the CARLA
project in Unreal Engine.

• Incorporates CARLA with SUMO, demonstrating integration possibilities for our
project.

Click here to visit the document

These works collectively contribute to our understanding of Digital Twin applications, platform
development, and integration with real-time data sources, guiding our project’s direction and
goals.

PI - Projeto em Informática 7

https://ieeexplore.ieee.org/document/9899796
https://ieeexplore.ieee.org/document/10200728
https://ieeexplore.ieee.org/document/9913679

3.2 Workflow

3.2.1 Tasks and Project Calendar

The team developed a task list in the first moments of this project:

1. Study of Various Sensor Types and Data Generated

Investigate different sensor types and the data they generate.

2. Study of SUMO Software

Explore the functionalities and applications of SUMO for urban traffic simulation, establishing
a solid foundation for the project.

3. Study of CARLA Platform

Gain an in-depth understanding of the CARLA platform, dedicated to autonomous vehicle
simulation, essential for successful integration in the Aveiro context.

4. Design of Architecture for Simulated and Real Data Integration

Develop the architecture design that will enable the connection between simulators (SUMO
and CARLA), visualizers, and data from sensors, systems, and connected vehicles. The
conceptual phase is where the overall system structure will be outlined.

5. Development of Connectors and Frameworks

Implement the connectors and frameworks necessary to achieve the designed architecture.
Using technologies like REST, ROS2, and MQTT, practical components will be developed
to enable efficient communication between various system elements.

6. Testing on Digital Twin Setup

Conduct tests on the Digital Twin setup after the implementation of connectors and
frameworks. Tests will be conducted using simulated and real data from ATCLL infrastructure
and Altice Labs urban platform. This phase is crucial to ensure that the architecture
functions as expected and that integration between components is effective.

7. Stimulate Environment Changes

Test the robustness of the Digital Twin by modelling dynamic scenarios and evaluating
how the system responds to simulated changes in traffic, autonomous vehicle behaviour,
and environmental conditions. This will provide valuable insights to optimize the model
and anticipate potential challenges in the Aveiro Living Lab.

In establishing our project timeline, we encountered challenges in quantifying the time needed
for each task due to their varying complexities and dependencies. Despite these challenges, we
revised our timeline various times to ensure it aligned with our project objectives, and we built
our project calendar (Fig 1).

PI - Projeto em Informática 8

Fig. 1 - Project Calendar

PI - Projeto em Informática 9

3.2.2 Communication Plan and workflow

To store our project we created a repository (GitHub Repository) in the GitHub platform
and we developed a website (Website - Digital Twin) to display and store all our information
related to our work, including reports, presentations and the project calendar.

To track our progress, we used the backlog of the GitHub platform, where we defined tasks
and distributed responsibilities for each iteration.

A weekly meeting was scheduled to keep in touch with our advisors and update them on our
progress and showcase our work. These meetings serve as valuable ways to receive feedback and
guidance, ensuring alignment with project objectives and facilitating informed decision-making.
Slack was also used to keep in touch with our advisors. The team itself maintained contact,
through frequent small meetings, ensuring alignment of the objectives of the week. Additionally, a
Discord group has been established to facilitate communication and information sharing among
team members.

PI - Projeto em Informática 10

https://github.com/ZeMendes17/PI_Digital_Twin
https://pi-digitaltwin.netlify.app/

4 Elaboration Phase

4.1 Requirements

4.1.1 Requirements Gathering

During the requirements-gathering phase, we explored various approaches:

1. Discussion with our advisors

2. Team brainstorming sessions

3. Information gathering from documentation

4. Understanding the problem

5. Related work review

4.1.2 Functional Requirements

• Real-time traffic monitoring: Essential for understanding and managing real-time flow.

• Traffic simulation: Enables testing of multiple scenarios and optimization of management
strategies.

• Integration of real and simulated environment: Facilitates the creation of a comprehensive
model of urban mobility.

• Visualisation of integration in 3D: Provides a clear and immersive perspective on the
system’s performance and its potential impact on urban mobility.

4.1.3 Non-Functional Requirements

• Scalability: Ensuring that the system efficiently scales with more users and data.

• Reliability: Ensuring that simulation and analysis occur seamlessly to promote user
confidence.

• Low Latency: For a smooth user experience, it’s crucial that the system responds quickly
to commands and requests, essential for providing timely information.

• Maintainability: The code should be easy to understand and modify, allowing for efficient
updates.

• Usability: Ensuring an intuitive experience for all users, facilitating effective utilization.

PI - Projeto em Informática 11

4.2 Actors

We have three types of actors who can interact with our project system:

– Companies: Focused on utilizing the data to develop applications that improve
urban mobility;

– Researchers: Inclined on the learning factor and contributing to the field of urban
mobility and autonomous vehicles;

– Developers: Their objective is to build commercially viable solutions.

4.3 Use Cases

4.3.1 Personas

Dr. Josefa Rodriguez

– Age: 35

– Job: Researcher at a Transportation Research Institute

– Motivation: Josefa is driven by a passion for understanding urban mobility and
finding innovative solutions to improve transportation systems. With a background
in data science and urban planning, she is dedicated to conducting research that
contributes to safer, more efficient, and sustainable urban environments. Josefa thrives
on data analysis and simulation modeling, constantly seeking ways to integrate real
vehicle data into her research to generate actionable insights for urban planners and
policymakers.

Fig. 2 - Dr. Josefa Rodriguez

PI - Projeto em Informática 12

Artur Cabral

– Age: 40

– Job: Urban Manager at a City Planning Department

– Motivation: Artur is dedicated to ensuring the smooth operation of urban transportation
systems and improving the quality of life for city residents. With years of experience
in urban planning and management, he understands the importance of data-driven
decision-making in addressing traffic congestion and improving traffic flow. Artur is
motivated to implement innovative solutions that optimize road network behaviour
and enhance the overall efficiency of urban mobility.

Fig. 3 - Artur Cabral

4.3.2 Main Scenarios

Josefa Rodriguez, a seasoned researcher at a prestigious Transportation Research Institute, is
tasked with addressing the increasing traffic congestion issues in her city. Armed with a wealth
of data science and urban planning knowledge, Josefa turns to the project’s system to tackle this
challenge.

Scenario 1:

• Josefa starts her day by accessing the project’s system, where she collects real-time vehicle
data from various traffic sensors.

• With meticulous attention to detail, Josefa integrates this diverse dataset within the
system, ensuring it encompasses crucial parameters like traffic flow, vehicle speed, and
road conditions.

Scenario 2:

• Josefa delves deep into the integrated dataset, mining it for insights into the city’s traffic
patterns and behaviours.

• Leveraging her expertise, Josefa seamlessly integrates this real vehicle data into her research
models, laying the groundwork for her investigation into urban mobility dynamics.

PI - Projeto em Informática 13

Scenario 3:

• With the dataset at her fingertips, Josefa employs the project’s system to create intricate
traffic simulations tailored to the city’s unique landscape.

• These simulations encompass diverse scenarios, from routine rush hour congestion to unforeseen
events like road closures and accidents, allowing Josefa to envisage a 3D representation of
potential traffic scenarios.

Scenario 4:

• With her research progressing, Josefa ensures the preservation of her simulations within
the system.

• By exporting and storing her previous simulations, Josefa establishes a comprehensive
repository of urban mobility data, laying the foundation for future analyses and informed
decision-making.

Artur Cabral, a seasoned urban manager at the helm of a bustling city’s Planning Department,
faces the daunting task of alleviating traffic congestion and enhancing urban mobility. With an
eye for innovation, Artur turns to the project’s system to tackle these pressing challenges head-on.

Scenario 5:

• Artur kicks off his day by diving into the project’s system, where he crafts detailed traffic
simulations tailored to the city’s intricate road network.

• Armed with these simulations, Artur embarks on a virtual journey through the city’s
bustling streets, exploring a plethora of traffic scenarios and testing various management
strategies to optimize traffic flow.

Scenario 6:

• Drawing upon insights gleaned from his simulations, Artur orchestrates real-world changes
to the city’s traffic infrastructure.

• From fine-tuning traffic signal timings to implementing strategic lane configurations, Artur
works tirelessly to sculpt a road network that seamlessly accommodates the city’s burgeoning
traffic demands.

Scenario 7:

• Artur bridges the gap between virtual and real-world traffic environments by integrating
real-time traffic data with his simulated scenarios.

• This integration provides Artur with a holistic understanding of the city’s urban mobility
landscape, empowering him to make informed decisions that resonate with real-world traffic
dynamics.

PI - Projeto em Informática 14

4.3.3 Use Cases Diagram

From the scenarios, we can extract common needs such as data analysis, simulation, and
monitoring, which are illustrated in the use case diagram (Figure 4).

Fig. 4 - Use Case Diagram

4.4 Architecture

Figure 5 describes our project’s architecture

The architecture begins by representing the components of ATCLL being reused in this
project, such as the sensors for data collection, the MQTT broker for real-time data reception,
and the STH Comet API for accessing persisted historical data in a database.

Within the scope of this project, we highlight the first Python module, considered the system’s
core. This module has various functionalities, including the consumption of real-time vehicle
data and simulated vehicle data, explained later. Additionally, this module is responsible for
instantiating the 2D (SUMO) and 3D (CARLA) visualization interfaces.

Regarding the user interface, a desktop environment was developed using React with Electron.
In this environment, users can, for example, insert simulated vehicles into the simulation during
runtime. The request for creating simulated data is sent to a second Python module, which has
a Flask API to receive the requests, and a sub-module responsible for creating the simulated
data. The simulated data is then published to a local MQTT broker, and, as mentioned earlier,
the main Python module consumes this data to insert it into the simulation via the TraCI API.

PI - Projeto em Informática 15

Additionally, we have two graphical interfaces in the architecture: the SUMO interface,
representing the 2D environment, and the CARLA interface, representing the 3D environment. In
a 3D simulation, the 2D environment is also present, and both interfaces communicate via sockets.
Therefore, the 3D environment functions as an extension for a more realistic visualization.

Lastly, it’s worth noting that the final architecture is the result of a series of evolutions that
accompanied the project’s development, being adapted to ensure proper functionality at every
stage of this project’s lifecycle.

Fig. 5 - Architecture v1

PI - Projeto em Informática 16

Fig. 6 - Architecture v2

Fig. 7 - Architecture v3

PI - Projeto em Informática 17

4.5 Technology Stack

4.5.1 React & Electron

We chose React because it was the framework most familiar to every member of our team.
Initially, we brainstormed the best options for our project, especially considering the need to
launch SUMO and CARLA through the interface. We concluded that a web app wouldn’t be
the ideal choice since launching desktop applications like SUMO and CARLA through a web
interface didn’t make sense to us.

After thorough discussions, we determined that a desktop app would be the best and most
logical solution. We explored various options, including Electron and Tauri. Electron emerged as
the superior and most simple choice, allowing us to use HTML frameworks like React. Moreover,
with Node.js, it provided a seamless development experience similar to developing a web app,
which we were already accustomed to.

By leveraging React and Electron together, we could build a responsive, performant, and
platform-independent desktop application. This combination enabled us to utilize our existing
skills and streamline the development process, ensuring that we could efficiently implement the
features required for our project.

4.5.2 Flask

We chose Flask because it was a framework our team was already familiar with. Flask
provides a very simple and efficient way to build REST APIs, which was crucial for our project’s
back-end services. Its lightweight nature and flexibility allowed us to quickly set up and scale
our application’s server-side components.

Given the tight timeline for developing the entire solution, Flask allowed us to focus on
more important tasks by minimizing the boilerplate code typically required for setting up the
environment. This efficiency enabled us to concentrate on implementing core features related to
the Digital Twin (system features) rather than spending time with the set-up.

Flask also provides a range of extensions and dependencies that are essential for our needs.
It facilitated seamless communication with our database of choice (MongoDB) and helped in
setting up RESTful APIs efficiently.

4.5.3 MongoDB

MongoDB’s flexibility and ease of use made it a natural choice for our project’s data storage
needs, allowing us to store the user accounts and some previous simulations if the user pretends
to. Its JSON-like document structure allows for efficient data querying and indexing.

Additionally, MongoDB was already being used by the Aveiro Tech City Living Lab to persist
data received from sensors over time in the cloud. This existing integration made our team
more inclined to use it, as it ensured compatibility and allowed us to leverage the established
infrastructure.

PI - Projeto em Informática 18

4.5.4 Mosquitto

We chose Mosquitto as our message broker to facilitate communication between the API and
the adapters that handle task adjustments and simulation updates. Mosquitto’s implementation
of the MQTT protocol makes it ideal for lightweight, low-bandwidth communication, ensuring
that messages are delivered promptly and reliably.

The Aveiro Tech City Living Lab also used Mosquitto in an example setup to retrieve data
from sensors across the city. Given this existing use case, it made sense to leverage the same
technology for our project. By using Mosquitto for both sending tasks from the API to the
adapters and receiving real-time data, we maintained consistency in our messaging infrastructure.
This approach simplified our development process and made it easier for our team to understand
and manage the communication systems within our project.

PI - Projeto em Informática 19

5 Construction Phase

5.1 What have we done

5.1.1 Generation of 2D and 3D Maps:

The first step is importing the OSM (OpenStreetMap) file, which contains the geographical
data of the desired map. This OSM file serves as the foundation for all subsequent transformations.
Once the OSM file is obtained, it undergoes a cleaning process utilizing JOSM (Java OpenStreetMap
Editor). During this phase, all elements not recognized by SUMO and CARLA are removed.
This step is critical as it ensures the resulting OSM file is compatible with both simulators,
eliminating unnecessary data that could cause issues during conversion.

Fig. 8 - Map Cleanup Using JOSM

After cleaning the OSM file, we use the ”main.py” script located in the ”osmtoxdor” folder.
This script performs two important functions: it generates an XDOR header that guarantees
correct georeferencing in CARLA and creates a new modified OSM file. This new OSM file
is specifically adjusted for use with CARLA, incorporating the necessary modifications for
compatibility.

With the modified OSM file in hand, we move on to the XDOR format conversion stage.
We use the ”converter.py” script, which utilizes the newly generated OSM file from the previous
step, to create the final XDOR file. This XDOR file includes the previously generated header,
ensuring all necessary georeferencing data is present.

Finally, to generate the SUMO network, we use a script located in the ”xdortoNetXml” folder.
This script converts the final XDOR file into a traffic network usable by SUMO. The generated
network represents the final map configuration, ready for use in traffic simulations within SUMO.

This transformation process, from the initial importation of the OSM file to the creation of
the SUMO network, ensures that the maps are correctly prepared for integration and use in the
SUMO and CARLA simulators, providing a robust platform for realistic and accurate traffic
simulations.

PI - Projeto em Informática 20

Fig. 9 - Map Generation Workflow

5.1.2 Adapters

The adapters are crucial to the development of our Digital Twin, concentrating on the
implementation of the system’s core functionalities. Developed as a key component of our project,
these adapters enable the entire system to operate smoothly and allow users to perform traffic
simulations and manage them.

The adapters are essential for running and co-simulating the SUMO and CARLA environments.
This integration is pivotal as it combines the strengths of both systems, with SUMO handling
detailed 2D traffic simulations and CARLA providing realistic 3D visualizations and advanced
vehicle dynamics. To ensure continuous operation, the adapters implement an infinite loop that
keeps the simulation active and responsive to real-time inputs.

A key function of the adapters is managing real-time data and user interactions. They
subscribe to a local MQTT broker, receiving real-time change requests that enable dynamic
modifications within the simulation. For example, when a user requests to insert simulated
vehicles, block roads, or test specific scenarios, the adapters process these requests and communicate
the necessary changes to the simulation environments using the TraCI API.

The development using the TraCI API was a major component of our project. This API
allows the adapters to communicate with the simulation environments, ensuring that changes are
accurately reflected in real-time. Whether it’s adding new vehicles, blocking roads, or maintaining
the integrity of simulation states, the TraCI API ensures that these operations are carried out
efficiently.

In essence, the development of the adapters was the most substantial part of our project.
They form the foundation that enables the entire system to function, providing users with the
tools they need to simulate and manage urban traffic scenarios. Without the adapters, the
integration of SUMO and CARLA and the dynamic capabilities of our Digital Twin would not
be possible.

Additionally, it is noteworthy that three types of adapters have been developed, each for
a specific type of simulation, which have distinct characteristics beyond the functionalities
mentioned.

PI - Projeto em Informática 21

Types of adapters:

• Live Data - This adapter has a specific functionality responsible for connecting to the
MQTT broker of the Aveiro Tech City Living Lab, receiving data collected by sensors, and
adding it to the digital twin in real time.

• Historic Data - This adapter is designed to simulate real city traffic from a specific day
and time, using data persisted in a database provided by the Aveiro Tech City Living Lab
(ATCLL). It integrates actual traffic patterns into the simulation, allowing users to analyze
and manage real-world scenarios effectively.

• Simulated Data - Considered the simplest, this adapter is responsible only for simulations
with simulated vehicles.

TraCI API:

Another key functionality implemented in all adapters was the instantiation of the TraCI API
(Traffic Control Interface), which enabled interaction with real-time traffic simulation. TraCI
uses a TCP-based client/server architecture to provide access to SUMO, allowing for various
operations such as defining routes for vehicles, modifying simulation parameters, obtaining
information about the current traffic state, and much more.

SUMO-CARLA Co-simulation:

One more crucial responsibility of the adapters, especially those handling 3D simulations,
was to facilitate the execution of a co-simulation between SUMO and CARLA, enabling all
changes sent by TraCI to SUMO to be reflected in the 3D environment executed by CARLA.
The implementation of co-simulation involves several steps, including:

• Initial setup - Firstly, it’s necessary to configure both SUMO and CARLA instances to
be ready to communicate with each other. This involves configuring network settings, such
as communication ports and IP addresses.

• Vehicle type configuration - Since the two software platforms map vehicles differently
(SUMO focuses more on vehicle classes - passengers, emergency, among others - while
CARLA focuses more on the specific type of car to map which image should appear in the
3D environment), it’s important to establish a correspondence between the vehicle types
mapped by the software. For example, specifying that the vehicle identified by CARLA as
”vehicle.audi.a2” is mapped by SUMO as ”passenger”.

• Communication interface - Instantiate the TraCI API responsible for manipulating
traffic in the co-simulation.

• Synchronization - It’s crucial to ensure that both simulators are synchronized during the
co-simulation. This involves synchronizing simulation times, ensuring that actions in one
simulator are properly reflected in the other.

PI - Projeto em Informática 22

Simulated Data Processing:

As previously mentioned, the adapters concentrate on the main components for the proper
functioning of the Digital Twin. Among these components are the modules responsible for
processing the simulated data and integrating it into the simulation, including:

• Add a simulated car - The addSimulated module is responsible for introducing a vehicle
(car, motorcycle, or bicycle) with a defined route into the simulation. From two points,
initial and final, selected on the interface map, the user can insert a virtual vehicle with a
well-defined route. This module starts by using the traci.simulation.convertRoad method
to find the roads that best represent these points based on the start and end coordinates
and the type of vehicle. Then, using the traci.simulation.findRoute method, the system
applies the Dijkstra algorithm to find the optimal path between these points. Finally, after
the route is successfully defined, the system uses a timestamp to create a unique ID for the
vehicle and, through the traci.vehicle.add method, inserts the vehicle into the system and
makes it follow the defined route.

• Add random traffic - The module responsible for inserting random traffic, addRandomTraffic
takes the desired number of cars as a parameter from the user. From there, it scans the
edges (streets) to filter those allowing vehicle traffic and queries to find all recognized
vehicle types. With this information, the system executes a certain number of cycles equal
to the desired number of cars. Randomly, it selects the vehicle type, initial and final
edges, and inserts the vehicle with random type and behaviour again using the method
traci.vehicle.add”.

• Block road - The module responsible for road blocking can be described as a method that
first accesses information about which edges form a given street from the ”road.json” file.
Then, the module iterates through all the edges of the street being blocked and sets the
maximum speed of these edges to 0. This manipulation occurs because of the algorithms
utilized by the traffic system, which rely on costs associated with edges to determine routes.
This approach ensures that vehicles will not use the blocked road segments for navigation,
effectively simulating a road closure scenario within the traffic simulation environment.
Additionally, it’s worth noting that the simulation must not include any vehicles during
the road closure period. This is because vehicles in SUMO have predefined routes, so they
could still attempt to use the blocked road, resulting in inaccurate simulation outcomes.

• Block roundabout - The snippet of code responsible for blocking roundabouts bears a
striking resemblance to that of blocking roads. Similarly, it accesses an external file to map
out which edges constitute the roundabout slated for closure. Again, as a result of the
traffic algorithms employed, it sets the maximum speed for these edges to zero, effectively
preventing vehicles from traversing through them. Similar to the ”Block Road” feature, no
vehicles can be present in the simulation to block roundabouts.

PI - Projeto em Informática 23

5.1.3 Flask API

Constructed upon the robust foundation of the Flask microframework, the API emerges as
a pivotal conduit for communication between the intricate simulation system and the Electron-
based desktop application. The inherent adaptability and efficiency of Flask play a critical role
in enabling the seamless deployment of an architectural framework that adeptly addresses the
multifaceted challenges associated with data management and manipulation within the context
of large-scale simulations.

Communication Endpoints: A Core Component At the heart of the API’s functionality lies
a meticulously designed suite of RESTful endpoints. These endpoints are strategically crafted
to encourage and facilitate targeted interactions with the simulation system. By supporting a
comprehensive array of Create, Read, Update, and Delete (CRUD) operations on data, these
endpoints ensure a seamless and precise exchange of information between the Electron application
and the server. This interoperability is paramount in maintaining a dynamic and responsive
system capable of adapting to the evolving demands of real-time simulations.

Enhanced Data Handling Through Integration Furthermore, the API’s integration with
Flask-PyMongo introduces a level of sophistication that significantly enhances the API’s ability to
interact directly and efficiently with MongoDB databases. This integration unlocks the potential
for the manipulation of vast quantities of data with unparalleled speed and precision. The result
is a highly performant system that can effectively manage and manipulate large volumes of data,
thereby supporting the sophisticated requirements of modern simulation systems.

By leveraging the strengths of Flask and integrating advanced technologies such as Flask-
PyMongo, the API stands as a testament to the power of modern web frameworks in addressing
the complex needs of large-scale simulations. Its design and functionality underscore the importance
of flexible, efficient, and scalable solutions in the realm of data-intensive applications.

The API provides a series of RESTful endpoints, designed to facilitate specific interactions
with the simulation system. These endpoints support CRUD operations on data, ensuring a
fluid and accurate interaction between the Electron application and the server. Additionally,
integration with Flask-PyMongo promotes direct and efficient interaction with MongoDB databases,
allowing for the manipulation of large volumes of data with high performance.

Fig. 10 - Swagger REST API Documentation

PI - Projeto em Informática 24

5.1.4 User Management Endpoints in the Flask Application

The Flask application incorporates several RESTful endpoints designed to manage user
accounts, ensuring secure and efficient interactions with the underlying database. These endpoints
cater to the creation, retrieval, authentication, deletion, and modification of user profiles, playing
a vital role in the overall user experience and system security.

User Registration (POST /users) The registration endpoint facilitates the creation of new
user accounts. Upon receiving a request with a username, email, and password, the endpoint
validates these inputs and securely stores them in the database after hashing the password. This
process not only ensures the privacy of user passwords but also sets the groundwork for future
user interactions with the system.

User Authentication (POST /api/login)Authentication is a cornerstone of secure application
usage. The login endpoint verifies user credentials by comparing the submitted password with the
hashed version stored in the database. Successful authentication grants the user an access token,
which is then used for subsequent requests requiring authorization. This mechanism ensures that
only authenticated users can access protected resources.

User Profile Retrieval (GET /user) Retrieving user profile information is a common operation
that requires authentication to prevent unauthorized access. The endpoint decodes the access
token included in the request to identify the user. If the token is valid, the endpoint retrieves
the corresponding user profile from the database and returns it, ensuring that users can view
and manage their own information securely.

User Account Deletion (DELETE /user) Deleting a user account is a sensitive operation
that should be performed securely. The endpoint authenticates the request using an access token,
ensuring that only the account owner or an authorized administrator can initiate the deletion
process. Upon confirmation, the user’s account is removed from the database, permanently
deleting the user’s information from the system.

User Profile Update (PUT /user) Updating user profiles is a frequent requirement that must
be handled carefully to maintain data integrity and security. The endpoint supports updates to
a user’s username and email, requiring authentication through an access token. This ensures
that users can safely update their personal information without risking unauthorized changes.

These endpoints collectively form a robust user management system within the Flask application.
They provide a secure and intuitive way for users to interact with their accounts, from initial
registration to ongoing profile maintenance. The use of access tokens for authentication and
authorization across these endpoints underscores the application’s commitment to security and
user privacy.

PI - Projeto em Informática 25

Configuration and Launch of the Local MQTT Broker

The API also plays a crucial role in configuring and launching a local MQTT broker. This
protocol, ideal for the context of real-time simulations and IoT systems, is known for its lightness
and effectiveness. The API ensures the correct definition of topics and efficient management of
message flows, which is fundamental for the synchronization of data produced and consumed by
various components of the system.

5.1.5 STH Comet API integration with the Flask API

The Flask API serves as a critical bridge between the simulation system and the Electron
desktop application. Its connection with the STH Comet API is vital, as it plays a crucial
role in the collection and manipulation of historical sensor data. This capability is essential for
conducting simulations based on real and historical data, making it foundational for accurate
and effective simulations in smart city and IoT development environments.

Fig. 11 - STH Comet API architecture

Historical Data Retrieval

Through endpoints defined in the Flask API, requests can be made to the STH Comet API
to fetch specific historical data. This data is used to fuel simulations that require contexts based
on past events or conditions. Such a mechanism is crucial for trend analysis and the conduct of
predictive simulations.

The provided code snippets demonstrate two main endpoints within a Flask application that
interact with the STH Comet API to fetch data based on specific parameters. These endpoints
are /api/run3D and /api/run2D, which are designed to initiate simulations either in 3D or 2D
mode, respectively. The choice between running a simulation in real-time (live) or using historical
data (real data) is determined by query parameters passed to these endpoints.

PI - Projeto em Informática 26

Endpoint: /api/run3D

This endpoint accepts POST requests and initiates a 3D simulation. It checks for two query
parameters: live and real data. If live is set to True, it starts a Carla simulation in real-time
mode. If real data is set to True, it fetches historical data from the STH Comet API for each
entity specified in the request payload, processes this data, and then initiates a Carla simulation
using this historical data.

Endpoint: /api/run2D

Similar to the 3D simulation endpoint, this endpoint also accepts POST requests and initiates
a 2D simulation. It checks for the same query parameters (live and real data). Depending on
these parameters, it either starts a 2D simulation in real-time mode or fetches historical data for
the specified entities and uses this data to initiate a 2D simulation.

5.1.6 Fetching Data from STH Comet API

Both endpoints utilize a common function, fetch sth comet data, to retrieve data from the
STH Comet API. This function constructs a GET request to the STH Comet API’s endpoint,
passing along necessary headers and parameters such as the type of entity, the number of recent
records (lastN), and the date range (dateFrom and dateTo). The response from this API call
is then processed and returned to the calling function.

Data Workflow

When a request is initiated through the Electron application (e.g., for a 3D or 2D simulation
using real data), the Flask API processes the provided arguments (such as live or real data)
and makes the appropriate calls to the STH Comet API. Historical data is then collected within
specified time intervals (start time and end time), which are subsequently used to configure
and execute the simulation.

Requests to the STH Comet API are set up to return the necessary data based on the type
of entity and specified time interval, ensuring that only relevant data is retrieved. This method
guarantees efficiency and relevancy in the data used for each simulation.

Response Handling and Simulation

After receiving the data from the STH Comet API, the Flask API proceeds to process this
data, preparing it for use in simulations. Depending on the input parameters (live data or real
historical data), different simulation scripts are triggered. Each script is responsible for setting
up the corresponding simulated environment, whether in 3D or 2D, and starting the simulation
with the retrieved data.

Error Management and Feedback

In the event of errors during the request to the STH Comet API or during data processing, the
Flask API is equipped to handle these exceptions and provide appropriate feedback to the user.
This robustness is crucial for maintaining the reliability of the simulation system and ensuring
that users can trust the accuracy and efficacy of the simulations conducted.

PI - Projeto em Informática 27

5.2 Desktop Application

The desktop application was developed with the primary goal of providing an intuitive and
powerful interface for traffic simulation and analysis. This application allows users to create,
manipulate, and analyze traffic scenarios in both 2D and 3D visualizations. Users can add
vehicles and pedestrians, set specific routes, block roads or roundabouts, and observe the impact
of these actions in real-time.

The application is designed to enhance user experience by offering a seamless and responsive
interface, facilitating complex simulations through simple and accessible interactions.

5.2.1 Directory Structure

The front-end architecture of our desktop application is organized in a way that promotes
modularity and maintainability. The main directories and their purposes are as follows:

• src: Contains all the source code for the application.

– components: Reusable React components that form the building blocks of the user
interface.

– pages: Main pages of the application, each representing a distinct view or functionality.

– assets: Static resources such as images, icons, and styles.

• index.js: The entry point of the application, where the root component is rendered.

• App.js: The root component that sets up routing and global layout.

• package.json: Lists the project dependencies and scripts for building and running the
application.

5.2.2 User Interface Overview

Home Page

The ‘HomePage.js‘ page serves as the landing page for the application. It introduces users
to the Aveiro Digital Twin project and provides options to start simulations in both 2D and
3D formats. The component imports React and the ‘Tooltip‘ component from ‘react-tooltip‘
to enhance user interaction, particularly to remind users that SUMO and CARLA need to be
installed for simulations to run.

PI - Projeto em Informática 28

Fig. 12 - Home Page

Login and Register Pages

The ‘Login.js‘ and ‘Register.js‘ pages handle user authentication and registration within the
application.

The ‘Login.js‘ page allows users to log in to the application. It uses local state to store the
user’s email and password credentials and displays error messages if the credentials are invalid.
Upon successful login, the access token is stored in sessionStorage and the user is redirected to
the home page. If a non-logged-in user attempts to access a simulation, they are redirected to
the login page with a message indicating that login is required.

The ‘Register.js‘ page allows users to register for the application. It uses local state to store
the username, email, and password of the user. Basic validation is performed to ensure all fields
are properly filled out, including a valid email and a password of at least 6 characters. Upon
successful registration, the user is redirected to the login page. Otherwise, an error message is
displayed indicating that registration failed.

PI - Projeto em Informática 29

Fig. 13 - Log In Page

Run 2D and 3D Pages

The ‘Run2DPage.js‘ and ‘Run3DPage.js‘ are designed to provide a cohesive user experience
for initiating traffic simulations in both 2D and 3D environments. They achieve this through
the use of integrated forms, which allow users to select data sources such as live data, historical
data, or simulated data. When the user selects historical data, they are required to specify the
day, start time, and end time for the simulation. The program disables the option for users to
select days that have not yet occurred, ensuring realistic simulation conditions.

Fig. 14 - Run 3D Page

PI - Projeto em Informática 30

Simulation Page

The ‘SimulationPage.js‘ page is responsible for displaying detailed information about traffic
simulation in both 2D and 3D environments, using data received from the server via WebSocket.
Upon receiving data from the server, the component displays information such as simulation
time, total number of vehicles, the distribution among simulated vehicles, historical data, and
live data. The information is categorized by vehicle type, including simulated cars, historic data,
and live data.

Fig. 15 - Simulation Page

Add Random Page

The ‘AddRandom.js‘ page is designed to enable users to add various types of entities dynamically
to the traffic simulation environment, each with randomized routes. The user interface includes
multiple components, each representing different types of entities that can be added: cars,
motorcycles, bicycles, and pedestrians. Users only need to specify the quantity they want to insert
for the chosen entity type and all these entities will be visible in the simulation environments.

PI - Projeto em Informática 31

Fig. 16 - Add Random Page

Add Car, Motorcycle, Bike and Pedestrian Pages

The ‘CarPage.js‘, ‘MotorcyclePage.js‘, ‘BicyclePage.js‘, and ‘PedestrianPage.js‘ are designed
to facilitate the addition of vehicles and pedestrians to the traffic simulation environment with
specific routes. To achieve this, users interact with the map interface where they select both
the starting and ending positions for their chosen vehicle or pedestrian. Once the start and end
positions are marked, users can submit the vehicle’s route. This process involves constructing
a vehicle or pedestrian object with the specified positions and sending it to a back-end service
for processing. The component handles both single-position submissions (for scenarios where
only the start or end position is known) and dual-position submissions (where both positions are
specified). Additionally, users specify the quantity of vehicles they wish to simulate with that
route and set the departure time, which refers to the time when the vehicle or pedestrian begins
its journey in the simulation.

PI - Projeto em Informática 32

Fig. 17 - Add Car Page

Block Road and Roundabout Pages

The ‘Block.js‘ page is responsible for allowing users to block and unblock segments of roads
and roundabouts in the traffic simulation environment. It displays two sections on the page:
”Blocked Roundabouts” and ”Blocked Roads”. For each type of blocked segment, it iterates
through the ‘blockedRoundabouts‘ and ‘blockedRoads‘ arrays (if they are defined) and renders
a Card component for each segment. Each Card displays the segment ID and provides a button
to unblock it.

In the ‘BlockRoad.js‘ and ‘BlockRoundabout.js‘ pages, a map is displayed with all the roads
and roundabouts, respectively, where users can click to block those specific road segments and
roundabouts.

Fig. 18 - Block Roundabout Page

PI - Projeto em Informática 33

Clear Simulation Page

The ‘ClearSimulation.js‘ page is responsible for allowing users to clear all vehicles from the
traffic simulation environment. It consists of a single button labeled ”Clear Vehicles”. When
clicked, this button triggers a request to the server to clear all vehicles from the simulation. This
approach ensures that users can easily reset the simulation environment, clearing all vehicles and
preparing for a new simulation run.

Fig. 19 - Clear Page

End Simulation Page

The ‘EndSimulation.js‘ page provides functionality for ending and optionally saving a simulation
in the traffic simulation environment. It features two main actions: ending the simulation without
saving and saving the simulation with a specified name before ending it.

The ”End the Simulation” button immediately terminates the current simulation session when
clicked. The ”Save and End the Simulation” button triggers the display of a modal dialogue where
users can specify a name for the simulation before saving it. Once a name is entered and the
”Save Simulation” button within the modal is clicked, it saves the simulation with the provided
name to the user’s account history and then ends the simulation session.

Fig. 20 - End Simulation Page

PI - Projeto em Informática 34

History Page

The ‘History.js‘ page is designed to manage and display a user’s simulation history, providing
options to view details, re-simulate, and delete previous simulations.

Upon loading, the page sends an HTTP GET request to retrieve the user’s simulation history.
The history is then displayed in reverse chronological order, showing the most recent simulations
first. Each simulation entry includes details such as the simulation name, date, and options to
re-simulate or delete.

When clicking on the ”Re-simulate” button of a specific simulation entry, the system checks if
there is a simulation currently running. If not, a POST request is sent to initiate the re-simulation
with the specified simulation ID.

Fig. 21 - History Page

5.2.3 Statistics

To equip users with valuable insights for informed decision-making, at the end of our project
we decided to create statistics for the simulations if the user decides to save them in the history.
These statistics are made using the TraCI API, a powerful Python library for interacting with
SUMO. Through TraCI methods, the system gathers a range of key metrics during simulations.
These metrics provide a comprehensive picture of traffic flow and environmental impact within
the simulated city. The metrics captured are referent to portions of roads and roundabouts.

Here’s a breakdown of the various statistics the system is capable of generating:

• Average CO2 Emissions: This metric helps assess the environmental impact of different
traffic scenarios. TraCI provides methods to access vehicle emission data, allowing us to
calculate the average CO2 emissions.

• Average Waiting Time: Understanding wait times at intersections is crucial for optimizing
traffic flow. TraCI offers methods to track vehicle positions and speeds, enabling us to
calculate the average time vehicles spend waiting at specific locations, such as intersections
or roundabouts.

• Average Fuel Consumption: This metric is another valuable indicator of environmental
impact. TraCI provides access to vehicle fuel consumption data, allowing us to calculate
the average fuel consumption.

PI - Projeto em Informática 35

• Total and Maximum Number of Vehicles: Tracking vehicle volume is essential for
analyzing traffic density. TraCI offers methods to retrieve the total number of vehicles
within a specific road segment or roundabout at any given time.

Utilizing these given statistics, the system is able to make graphs to compare these metrics
between two simulations. For example, we can simulate a normal traffic flow on a Sunday in the
city of Aveiro. Then, to simulate the impact that the ”Aveiro’s Europa Marathon 2024” will
have on the city we make another simulation blocking the necessary roads and roundabouts. By
obtaining the statistics of both simulations, the application can generate graphs on the same:

Fig. 22 - Road and Roundabout Average CO2 Consumption Graphs

Fig. 23 - Road and Roundabout Average Fuel Consumption Graphs

Fig. 24 - Road and Roundabout Maximum Number of Vehicles Graph

PI - Projeto em Informática 36

Fig. 25 - Road and Roundabout Total Number of Vehicles Graph

Fig. 26 - Road and Roundabout Average Waiting Time Graph

5.3 Fears and Difficulties

5.3.1 Fears

Fear
Limited Time for Task Completion The fear of insufficient time to accomplish all objectives

poses a significant challenge, jeopardizing project deadlines and quality.

Our attempt to solve it
Implement efficient time management strategies, prioritizing tasks based on their importance

and allocating resources judiciously.

Fear
Challenges in Incorporating Real and Simulated Data

How did we solve it
In conjunction with the capabilities of SUMO, the group managed to streamline interactions

between real and simulated entities. Consequently, the data interaction occurs in a more natural
and straightforward manner.

PI - Projeto em Informática 37

Fear
Aveiro city map Not Supported by CARLA Simulation The unavailability of support for a

map so big as Aveiro within the CARLA simulation environment was a significant problem.

How did we solve it
Initially, our mapping efforts focused solely on Rua da Pega (Figure 7) due to upload errors

with larger maps. Utilizing editing tools, we streamlined and lightened the map, enabling the
successful integration of a larger Aveiro map (Figure 8) into CARLA.

Fig. 27 - Our Rua da Pega Map

PI - Projeto em Informática 38

Fig. 28 - Our Aveiro Map

5.3.2 Difficulties

Difficulty: Autoware Integration
Due to recent developments, the group was advised to explore integrating the project with

autonomous vehicles from Autoware. The objective was to incorporate an Autoware vehicle into
our simulation to test certain behaviours and interactions between the vehicle, the simulation,
and the real world.

A more advanced idea was to have the autonomous vehicle drive on real-world streets while
reacting to conditions applied in the simulation. However, after investigation, the group concluded
that such integration would not be an easy task, as it would require numerous changes, including
modifications to our base map.

A more focused research effort would be necessary to address the various problems we
identified, the main one being the need for a map compatible not only with SUMO and CARLA
but now also with Autoware. The latter requires a point cloud file and a lanelet file. These
two files would need to be somehow linked with the files used to create the map for SUMO and
CARLA, a task that, in terms of scope, would still involve significant work and research.

PI - Projeto em Informática 39

Difficulty: People only in 2D
Another difficulty we faced was representing people in a 3D environment, not just in 2D. This

challenge arises from the fact that on the CARLA side (3D), people are not defined as an entity
type, making their representation not possible.

5.4 Changes in the initial plan

5.4.1 Architecture

During the presentation of our project idea, the professors expressed concerns about our
architecture, fearing it didn’t align with the course’s emphasis on standard software development
practices. To address this, we modified our architecture to conform to these standards, as shown
in Figure 9.

Fig. 29 - Project’s Architecture

5.4.2 New User Interaction

As shown in the previous image (Figure 9), we had to adapt our architecture to include a new
user interaction interface. This new component is a desktop application. This change required
us to create several new components in the architecture.

An MQTT broker was introduced to handle subscriptions and the creation of new topics that
will be shared between the TraCI API and our desktop-side API (Flask). This API will contain
the endpoints that will be called by the user interface (Electron-React).

Additionally, a database component (MongoDB) was created to store data such as users,
their passwords, simulation history, and more.

PI - Projeto em Informática 40

5.4.3 Types of Simulations

Another change in our plan involved altering the types of simulations possible, particularly
concerning the use of real data. Due to issues with handling large volumes of high-velocity data,
the group, along with the advisors, revised the initial plan. The use of real-time data was limited
to one of the less busy sensors (the Rua da Pega sensor), making this simulation feasible only with
the map of that area. The goal was to isolate the use of real-time data in a smaller environment
to reduce the data processing load coming through the MQTT Broker from ATCLL.

Alongside this change, we introduced a new use of real data. By accessing ATCLL’s database,
we created a new feature: simulating with historical real data. This means we can now use real
data from a past period to test simulations using previously collected real data.

6 Results

Overall, the main goals and requirements of our project were successfully met. We managed to
build a responsive platform that enables users to simulate and assess various scenarios using both
simulated and real-world vehicles. This platform serves as a powerful tool for urban managers
and mobility researchers, allowing them to understand what will happen to the traffic when
changes occur in the city and how to improve the mobility of the city with this information.

However, it’s important to note that not all requirements were fully realized. Time constraints
and a lack of detailed information on certain topics, such as integrating Autoware into our
system, led to partial implementation of some features. Additionally, while we made a useful
implementation in utilizing city-wide sensor data, there’s room for improvements in terms of
maximizing the use of the resources provided by the sensors across the city.

6.1 Co-Simulation between SUMO and CARLA

The initial phase of our project involved a comprehensive exploration of the SUMO and
CARLA platforms. These platforms were a core component of the project, and understanding
how they work and their functionalities was paramount to achieving our goals. However, this
initial learning curve proved to be steeper than anticipated. While information on using these
platforms individually was plentiful, resources on how to co-simulate them with custom maps
were limited.

This lack of existing resources meant we had to delve deeper into the technical aspects of both
platforms and experiment with different configurations. Nonetheless, through persistence and
a commitment to problem-solving, we successfully established the co-simulation. This crucial
achievement allowed us to visualize traffic flow in both 2D and 3D, fulfilling our initial objective
for this phase and laying the groundwork for further analysis.

PI - Projeto em Informática 41

Fig. 30 - Co-Simulation between SUMO and CARLA

6.2 Simulated Data

Our next challenge involved bringing the co-simulation to life by adding simulated vehicles
to it. Research led us to TraCI, a Python API that integrates with SUMO, enabling it to launch
an instance of the 2D interface and apply the available methods to it. This powerful tool granted
us direct control over SUMO’s functionalities within our Python code.

Using TraCI, we could dynamically add vehicles to the simulation and even manipulate their
behaviour, such as adjusting their speed. The beauty of this approach lies in the seamless
integration between SUMO and CARLA. Vehicles added to SUMO also appear within CARLA
due to the co-simulation established before. This successful implementation marked a significant
milestone, allowing us to finally visualize simulated cars through both SUMO and CARLA
interfaces. We now had a dynamic and controllable virtual environment ready for further
experimentation.

Fig. 31 - Visualization of Simulated Vehicles in SUMO

PI - Projeto em Informática 42

6.3 Desktop Application

Recognizing the inconvenient nature of launching and managing the individual SUMO and
CARLA interfaces, we prioritized user experience by developing a dedicated desktop application.
This decision originated from our desire to make the system more accessible for urban planners
and mobility researchers, the target audience for our project.

Brainstorming sessions led us to conclude that a desktop application offered the most intuitive
solution, especially since the co-simulation already resided on the user’s PC. This application
acts as a central hub, providing a simple and friendly interface for users to interact with and
manage the simulated city environment.

Fig. 32 - Digital Twin Desktop Application

6.4 Live Data

Our project wasn’t just about creating a system that allowed us to add simulated vehicles. A
key goal was to bridge the gap between simulation and reality by incorporating real-world traffic
data from Aveiro’s city sensors into our digital twin. This integration proved crucial. It allowed
for not only visualizing simulated traffic but also to interact with and analyze actual traffic flow
data from the city.

This capability elevates the platform’s power by enabling users to create simulations that
are informed by real-world conditions, leading to more accurate and practical insights for urban
planning and mobility research.

Fig. 33 - Live Data from the real world represented in the CARLA Interface

PI - Projeto em Informática 43

6.5 Historical Data

Our initial plan aimed to make an integration between real-time traffic data alongside simulated
data. However, processing the high-speed sensor data streaming from Aveiro’s city infrastructure
proved challenging. The real-time sensor data was too much for our system to handle, so we
came up with a new solution. We used historical traffic data stored in the cloud instead.

This solution allows users to select a specific date and time, essentially using real traffic data
from previous days within their simulations. This approach not only preserved the value of
real-world data integration but also offered a practical solution to the limitations of real-time
processing.

Fig. 34 - Historical Data Dashboard and Representation in SUMO

6.6 Interaction Between Real and Simulated Vehicles

A crucial aspect of our project involved ensuring smooth interaction between real and simulated
data. We wanted to mirror real-world traffic, where collisions are avoided at all costs. To do so,
our solution involved treating real vehicles, detected by sensors, as simulated vehicles within the
platform. These ”real-time simulated” vehicles adjust their speed based on actual radar data
from the city. This gives them virtual awareness of all surrounding vehicles, both simulated and
real.

While they aim to maintain their real-world speed, they are programmed to predict and
avoid potential collisions by using emergency braking, thus ensuring no collisions occur within
the simulation.

Fig. 35 - Interaction between real and simulated vehicles

PI - Projeto em Informática 44

6.7 Statistics and Graphs

To wrap up the project, our team focused on providing valuable tools for urban planners.
The system generates data which allows us to make statistics about the simulations, like the
number of vehicles on a specific road or total CO2 emissions from a roundabout. But it goes
beyond raw data, the platform allows users to create graphs comparing two simulations. Imagine
comparing traffic flow before and after blocking a road. This ”before and after” visualization
empowers users to see the impact of changes on the city and make informed decisions about
urban mobility.

Fig. 36 - Generated graphs relative to Road CO2 emissions and the waiting time to enter a
roundabout, before and after block

PI - Projeto em Informática 45

7 Project Management

7.1 Project Management Tool

To efficiently track work tasks and quickly assign them to teammembers, we decided to use the
project management tool GitHub Projects. This agile platform allows us to effectively manage
tasks and issues related to the project while facilitating necessary planning. We can organize
tasks, assign them to team members, and track issues through various stages of development.
Additionally, since our team uses GitHub as our repository, having project management integrated
into the same platform enhances convenience and streamlines our workflow.

Fig. 37 - Team’s Github Projects

7.2 Development Workflow

To ensure that all developed code meets the requirements and does not break existing
functionality, we adopted the GitHub Flow strategy. This strategy outlines a clear process
for developing and integrating new features, ensuring a smooth and controlled workflow. Here’s
how we handle new user stories or features:

1. Create a New Branch

We start by creating a new branch with a short, descriptive name. This provides a stable
and isolated environment for development, preventing interference with ongoing work.

2. Implement the Pretended Changes in the Branch

All development work related to the new feature or task is done within this branch, ensuring
that changes are contained and manageable.

3. Submit a Pull Request

Once development is complete, a pull request is submitted to the “main” branch. The pull
request includes a clear title and a brief description of the changes.

PI - Projeto em Informática 46

4. Review and Approval

Another team member reviews the pull request and either approves or disapproves it. This
peer review process helps ensure code quality and functionality.

5. Merge the Pull Request

Once the pull request is approved, it is merged into the ”main branch.

Fig. 38 - Github - Branches Example

7.3 CI/CD Pipelines

Continuous Integration and Continuous Delivery/Deployment are crucial practices in modern
software development. They enable teams to integrate changes frequently, test comprehensively,
and deploy updates swiftly. This approach not only accelerates the release of new features but
also ensures that bug fixes and improvements are delivered efficiently and reliably, maintaining
high standards of software quality and user satisfaction.

To streamline our development process and ensure the continuous integration of high-quality
software, we have implemented a CI (Continuous Integration) pipeline. This pipeline automates
the running of unit tests for some crucial features, allowing us to quickly detect and address
issues early in the development cycle. By leveraging CI practices, we maintain a consistent
development workflow and ensure that our updates and new features are reliable and stable.

PI - Projeto em Informática 47

Fig. 39 - CI Pipeline

While we have not developed a CD (Continuous Deployment) pipeline due to the complexities
of using CARLA and SUMO, which need to be installed on the user’s computer, we have
explored containerization as a future solution. Docker images for both CARLA and SUMO
have been found, offering a promising approach for simplifying deployments. However, due to
time constraints, we have not yet implemented a fully containerized version of our pipeline.

PI - Projeto em Informática 48

8 Conclusion

The development of the ”Digital Twin - Aveiro Tech City Living Lab” project represented
a significant advancement in the application of innovative technologies within the context of
smart cities. Throughout this journey, we not only succeeded in designing a platform that
integrates urban scenario simulation with autonomous vehicles and multimodal transportation
but also demonstrated the practical viability and utility of digital twin models in complex urban
environments.

The interaction between real and simulated components, enabled by the integrated use of
urban sensor data and detailed simulations, proved to be fundamental for the effective analysis
and management of urban mobility. This approach allowed for accurate visualization and a deep
understanding of traffic dynamics, which are essential for the planning and implementation of
more efficient and sustainable traffic policies.

The challenges faced, particularly in integrating real-time data and adapting existing infrastructure
to support large-scale simulation, were overcome with technical innovations and adjustments in
the project’s architecture. These solutions not only reinforced the pioneering character of the
project but also set a precedent for future smart urban development initiatives.

Furthermore, the continuous collaboration with institutional partners and the contributions
from various team members were indispensable for the success of the project. The ability to
quickly adapt to new demands and the integration of constructive feedback were crucial for the
ongoing refinement of the platform.

In summary, the ”Digital Twin - Aveiro Tech City Living Lab” project achieved its initial
objectives, establishing a solid foundation for future expansions and research in the area of digital
simulation and urban mobility management. The lessons learned and the technologies developed
will significantly contribute to transforming Aveiro into a smarter and more connected city,
highlighting the essential role of technology in the sustainable development of urban areas.

PI - Projeto em Informática 49

9 Future Work

For future work to continue this project, there are several key points that could be further
developed. One aspect is enhancing scenario capacity with real-time data, which would
involve expanding the capability of scenarios by incorporating real-time data streams. Another
important area is integrating Autoware, which would require updating the mapping infrastructure
to ensure compatibility not only with SUMO and CARLA but also with Autoware. This
integration would necessitate implementing a new map construction pipeline to facilitate Autoware
integration seamlessly.

Looking further ahead, there are future integration possibilities that could significantly
advance the project. This could involve not only incorporating Autoware but also leveraging this
environment to understand and utilize communication between autonomous vehicles, thereby
enhancing their performance and coordination.

Moreover, a critical aspect of future work would be utilizing simulation results for real-
world changes. This involves employing simulation results to drive real-world changes and
inform decision-making processes. For example, one could conduct experiments to assess the
impact of shifting from car usage to bicycles on infrastructure, such as traffic lights and bike
lanes. Analyzing the implications of reduced car traffic and increased bicycle usage could provide
valuable insights for urban planning and transportation policy.

In summary, the future work for this project entails advancing key areas such as scenario
capacity, Autoware integration, exploring futuristic integration possibilities, and utilizing simulation
results for practical real-world applications. These efforts aim to push the boundaries of autonomous
vehicle technology and contribute to sustainable transportation solutions.

PI - Projeto em Informática 50

10 References

References

[1] Krešimir Kušić, Rene Schumann, Edouard Ivanjko, ”Building a Motorway Digital Twin in
SUMO”, September 2022. Last accessed on June 3, 2024. https://ieeexplore.ieee.org/
document/9899796

[2] Kui Wang, Zongdian Li, Tao Yu, Kei Sakaguchi, ”Smart Mobility Digital Twin for
Automated Driving”, August 2023. Last accessed on June 3, 2024. https://ieeexplore.
ieee.org/document/10200728

[3] Talha Azfar, Jeffrey Weidner, Adeeba Raheem, Ruimin Ke, Ruey Long Cheu, ”Efficient
Procedure of Building University Campus Models for Digital Twin Simulation”, October
2022. Last accessed on June 3, 2024. https://ieeexplore.ieee.org/document/9913679

PI - Projeto em Informática 51

https://ieeexplore.ieee.org/document/9899796
https://ieeexplore.ieee.org/document/9899796
https://ieeexplore.ieee.org/document/10200728
https://ieeexplore.ieee.org/document/10200728
https://ieeexplore.ieee.org/document/9913679

	Introduction
	Our Team
	Inception Phase
	Product Concept
	Problem
	Goals
	State-of-the-Art

	Workflow
	Tasks and Project Calendar
	Communication Plan and workflow

	Elaboration Phase
	Requirements
	Requirements Gathering
	Functional Requirements
	Non-Functional Requirements

	Actors
	Use Cases
	Personas
	Main Scenarios
	Use Cases Diagram

	Architecture
	Technology Stack
	React & Electron
	Flask
	MongoDB
	Mosquitto

	Construction Phase
	What have we done
	Generation of 2D and 3D Maps:
	Adapters
	Flask API
	User Management Endpoints in the Flask Application
	STH Comet API integration with the Flask API
	Fetching Data from STH Comet API

	Desktop Application
	Directory Structure
	User Interface Overview
	Statistics

	Fears and Difficulties
	Fears
	Difficulties

	Changes in the initial plan
	Architecture
	New User Interaction
	Types of Simulations

	Results
	Co-Simulation between SUMO and CARLA
	Simulated Data
	Desktop Application
	Live Data
	Historical Data
	Interaction Between Real and Simulated Vehicles
	Statistics and Graphs

	Project Management
	Project Management Tool
	Development Workflow
	CI/CD Pipelines

	Conclusion
	Future Work
	References

